Wasserstein Distance Measure Machines

نویسندگان

  • Alain Rakotomamonjy
  • Abraham Traore
  • Maxime Berar
  • R'emi Flamary
  • Nicolas Courty
چکیده

This paper presents a distance-based discriminative framework for learning with probability distributions. Instead of using kernel mean embeddings or generalized radial basis kernels, we introduce embeddings based on dissimilarity of distributions to some reference distributions denoted as templates. Our framework extends the theory of similarity of Balcan et al. (2008) to the population distribution case and we prove that, for some learning problems, Wasserstein distance achieves low-error linear decision functions with high probability. Our key result is to prove that the theory also holds for empirical distributions. Algorithmically, the proposed approach is very simple as it consists in computing a mapping based on pairwise Wasserstein distances and then learning a linear decision function. Our experimental results show that this Wasserstein distance embedding performs better than kernel mean embeddings and computing Wasserstein distance is far more tractable than estimating pairwise KullbackLeibler divergence of empirical distributions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Wasserstein distance and its application to transport equations with source

In this article, we generalize the Wasserstein distance to measures with di erent masses. We study the properties of such distance. In particular, we show that it metrizes weak convergence for tight sequences. We use this generalized Wasserstein distance to study a transport equation with source, in which both the vector eld and the source depend on the measure itself. We prove existence and un...

متن کامل

Monge's Optimal Transport Distance with Applications for Nearest Neighbour Image Classification

This paper focuses on a similarity measure, known as the Wasserstein distance, with which to compare images. The Wasserstein distance results from a partial differential equation (PDE) formulation of Monge’s optimal transport problem. We present an efficient numerical solution method for solving Monge’s problem. To demonstrate the measure’s discriminatory power when comparing images, we use it ...

متن کامل

A new probability measure-valued stochastic process with Ferguson-Dirichlet process as reversible measure∗

A new diffusion process taking values in the space of all probability measures over [0,1] is constructed through Dirichlet form theory in this paper. This process is reversible with respect to the Ferguson-Dirichlet process (also called Poisson Dirichlet process), which is the reversible measure of the Fleming-Viot process with parent independent mutation. The intrinsic distance of this process...

متن کامل

Wasserstein Stability of the Entropy Power Inequality for Log-Concave Densities

We establish quantitative stability results for the entropy power inequality (EPI). Specifically, we show that if uniformly log-concave densities nearly saturate the EPI, then they must be close to Gaussian densities in the quadratic Wasserstein distance. Further, if one of the densities is log-concave and the other is Gaussian, then the deficit in the EPI can be controlled in terms of the L-Wa...

متن کامل

Wasserstein Distance Guided Representation Learning for Domain Adaptation

Domain adaptation aims at generalizing a high-performance learner on a target domain via utilizing the knowledge distilled from a source domain which has a different but related data distribution. One solution to domain adaptation is to learn domain invariant feature representations while the learned representations should also be discriminative in prediction. To learn such representations, dom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018